Czy sztuczna inteligencja myśli w sposób podobny do ludzi?

Podejmowanie dobrych decyzji jest ważne, ale kluczowe jest przy tym rozumienie, dlaczego dokonało się takiego a nie innego wyboru. Z tego względu naukowcy stworzyli narzędzie, które umożliwia im ocenę działań sztucznej inteligencji.

Za pomysłem stoją przedstawiciele MIT i IBM Research. Dzięki ich wysiłkom możliwe było agregowanie, sortowanie i klasyfikowanie danych dotyczących decyzji podejmowanych przez modele oparte na uczeniu maszynowym. Technika ta, określana mianem Shared Interest, wykorzystuje wskaźniki, które porównują, w jakim stopniu rozumowanie modelu odpowiada rozumowaniu człowieka.

Shared Interest powinno wskazywać na niepokojące trendy dotyczące podejmowania decyzji przez model. W ten sposób możliwe będzie wykrycie, że na przykład ma on tendencję do popełniania błędów związanych z obiektami widocznymi w tle na analizowanych zdjęciach. Dzięki nowemu narzędziu człowiek jest jednak w stanie błyskawicznie określić, czy model jest godny zaufania.

Podstawę funkcjonowania takiego rozwiązania stanowi wyznaczanie obszarów obrazu, które były ważne dla modelu podczas podejmowania decyzji. W efekcie powstaje coś w rodzaju mapy, którą można nałożyć na oryginalny obraz. W praktyce działa to tak, że kiedy model podjął decyzję o zidentyfikowaniu danego obiektu to narzędzie wykaże, czym się przy niej kierował. Jeśli podświetlone elementy będą nieszczególnie związane z ostatecznym wyborem, to może się okazać, iż sztuczna inteligencja „miała więcej szczęścia niż rozumu”.

Sztuczna inteligencja może podejmować prawidłowe decyzje, ale dochodzić do nich w niewłaściwy sposób

Shared Interest porównuje dane wygenerowane przez model i przez człowieka dotyczące samego obrazu. Dzięki temu możliwe jest określenie, na ile się one pokrywają. Stopień dopasowania jest szacowany w oparciu o kilka metryk, a ostatecznie dana decyzja jest przyporządkowywana do jednej z ośmiu kategorii. Te są bardzo zróżnicowane, od sytuacji, w których model podjął prawidłową decyzję dochodząc do niej w odpowiedni sposób, aż po te, w których zarówno werdykt jak i sposób myślenia były błędne.

Biorąc pod uwagę trzy różne scenariusze, autorzy eksperymentu wykazali, że Shared Interest może być użyteczne nie tylko dla naukowców zajmujących się uczeniem maszynowym, ale także dla amatorów. Warianty te obejmowały kolejno: wspomaganie dermatologa w zakresie oceny skuteczności sztucznej inteligencji w diagnozowaniu raka na podstawie zdjęć zmian skórnych; błyskawiczną analizę tysięcy poprawnych i niepoprawnych decyzji; wyszczególnienie cech obrazu, które okazały się najważniejsze dla podjętych decyzji.

W pierwszym przypadku dermatolog stwierdził, iż nie może zaufać modelowi, ponieważ ten zbyt często dokonuje wyborów w oparciu o artefakty pojawiające się na analizowanych obrazach. Myślenie człowieka i maszyny okazało się więc rozbieżne. W przyszłości naukowcy chcieliby użyć Shared Interest na przykład do analizy danych tabelarycznych, które są wykorzystywane w dokumentacji medycznej.

Podziel się postem:

Najnowsze:

Oprogramowanie

Unia Europejska przejdzie na Linuxa? Powstaje dystrybucja EU OS

Unia Europejska może wkrótce podjąć kroki w kierunku uniezależnienia się od amerykańskiego oprogramowania. Społeczność entuzjastów pod patronatem władz UE pracuje nad projektem EU OS, który ma zastąpić system operacyjny Windows w instytucjach rządowych. Wybór padł na modyfikację dystrybucji Fedora Linux, która zostanie dostosowana do potrzeb urzędników poprzez interfejs przypominający Windows.

Bezpieczeństwo

Przełomowa kwantowa technologia generowania liczb losowych z WAT: Szczegółowa analiza i perspektywy

W dzisiejszym zaawansowanym technologicznie świecie, prawdziwie losowe liczby stanowią fundament wielu kluczowych dziedzin. Od zabezpieczania komunikacji poprzez kryptografię aż po przeprowadzanie złożonych symulacji naukowych i inżynierskich , generowanie nieprzewidywalnych sekwencji danych jest niezbędne. Losowość odgrywa również istotną rolę w grach losowych , w sektorze finansowym , gdzie zapewnia unikalność transakcji, oraz w badaniach statystycznych. W kryptografii, siła klucza szyfrującego jest bezpośrednio związana z jakością i stopniem losowości użytym do jego wygenerowania . Im wyższa entropia źródła losowego, tym trudniejszy do złamania staje się klucz. Prawdziwa losowość jest zatem kluczowym elementem zapewniającym bezpieczeństwo w cyberprzestrzeni, wzmacniając algorytmy szyfrujące i chroniąc integralność przesyłanych oraz przechowywanych danych . Zapotrzebowanie na generatory liczb losowych o wysokiej jakości i nieprzewidywalności stale rośnie, co jest bezpośrednio powiązane z postępem technologicznym i coraz większym znaczeniem bezpieczeństwa informacji. Wraz z dynamicznym przenoszeniem coraz większej liczby aspektów naszego życia do sfery cyfrowej, ilość generowanych i przesyłanych danych nieustannie wzrasta. Ochrona tych danych przed nieautoryzowanym dostępem i manipulacją staje się priorytetem, a prawdziwa losowość jest nieodzownym narzędziem do skutecznego szyfrowania i zabezpieczania przed różnego rodzaju atakami.

Bezpieczeństwo

Prawdopodobnie DeepSeek Zna Twoje Sekrety: Analiza Bezpieczeństwa Danych Treningowych LLM

Prawdopodobnie DeepSeek zna Wasze sekrety oraz klucze API! Takie ostrzeżenie pojawiło się na łamach Sekurak.pl. W dynamicznie rozwijającym się świecie dużych modeli językowych (LLM), gdzie innowacje pojawiają się niemal codziennie, DeepSeek AI szybko zyskał miano znaczącego gracza, budząc zainteresowanie swoimi możliwościami i efektywnością. Jednakże, wraz z postępem technologicznym, pojawiają się również nowe wyzwania w obszarze bezpieczeństwa. Niedawne odkrycie dokonane przez badaczy z Truffle Security rzuca nowe światło na potencjalne zagrożenia związane z danymi treningowymi tych zaawansowanych modeli. Wnikliwa analiza publicznie dostępnego zbioru danych Common Crawl, wykorzystywanego do trenowania LLM, w tym DeepSeek, ujawniła obecność licznych, potencjalnie wciąż aktywnych kluczy API i haseł.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *