Czym tak naprawdę jest sztuczna inteligencja?

Dzisiaj tyle mówi się o sztucznej inteligencji i związanym z nim uczeni maszynowym oraz deep learning. Ale co tak naprawdę oznacza? Co smartwatche mają wspólnego ze sztuczną inteligencją?

Mianem sztucznej inteligencji (AI) określamy „inteligencję” maszyn, w przeciwieństwie do naturalnej inteligencji występującej u ludzi. Należy pamiętać, że pewne formy inteligencji występują także u zwierząt, np. szympansów lub delfinów, ale to człowiek jest punktem odniesienia dla wszystkich neuronaukowców i programistów zajmujących się rozwojem AI.

Sztuczna inteligencja zyskała swoją nazwę i stała się formalną dziedziną badań w 1956 r., a pierwsze prace doprowadziły do powstania nowych narzędzi do rozwiązywania problemów matematycznych. Szybko okazało się, że stworzenie AI jest niezwykle trudne, a w latach 70. ubiegłego wieku postęp został zahamowany. Dopiero w ostatniej dekadzie przyspieszył, a to z powodu wzrostu mocy obliczeniowej i dostępności ogromnych zbiorów danych.

Uczenie maszynowe i deep learning

Ostatnie lata to prawdziwy boom w uczeniu maszynowym, czyli jednej z gałęzi AI. Obejmuje ono systemy, które automatycznie uczą się na podstawie analizowanych danych i dostępnych wyników, aby poprawić ich pracę w przyszłości. Można tu przytoczyć proste przykłady, np. zaopatrzone w specjalne algorytmy aplikacje, które szacują, ile czasu zajmie podróż z punktu A do punktu B, a następnie udzielają wskazówek dotyczących trasy. Bez takich rozwiązań usługi Google Maps czy analogiczne Apple byłyby niefunkcjonalne.

Uczenie maszynowe ma także dużą wartość diagnostyczno-analityczną. Im lepszy algorytm i im więcej zdjęć przedstawiających tkanki zmienione nowotworowo pokażemy komputerowi, tym lepiej będzie je rozpoznawał. Analogicznie, uczenie maszynowe jest używane na całym świecie np. do monitorowania stanu mostów (którym zdjęcia robią drony), do natychmiastowego wykrywania wszelkich pęknięć i uszkodzeń. Właśnie w przypadku takich, konkretnych i dobrze zdefiniowanych zadań, które można podzielić na poszczególne kroki logiczne, uczenie maszynowe sprawdza się najlepiej. Uczenie maszynowe nie wymaga dużych zbiorów danych (chociaż im więcej, tym lepiej) i pozwala na szybkie dokonywanie obliczeń.

Dzisiaj najtrudniejsze zadania rozwiązują superkomputery – ale czy są one „inteligentne”?

Specjalną podkategorią uczenia maszynowego jest tzw. deep learning. Polega ono na tworzeniu sieci neuronowych, których zadaniem jest udoskonalanie technik rozpoznawania głosu i przetwarzanie języka naturalnego. Deep learning wymaga czasu i dużych zbiorów danych, ale jest przydatne w bioinformatyce, np. wykrywaniu nieprawidłowości w genomach czy projektowaniu leków.

Deep learning wymaga dużej mocy obliczeniowej – zarówno aby wytrenować model na podstawie ogromnej ilości danych, jak i wykorzystać go do podejmowania konkretnych decyzji. W oparciu o deep learning działają cyfrowi asystenci głosowi, typu Aleksy Amazona, Siri Apple czy Asystenta Google. Deep learning pozwala asystentom słuchać użytkownika i dowiadywać się, jakich informacji potrzebuje.

Ewolucja sztucznej inteligencji

Pewnym wyznacznikiem stopnia zaawansowania sztucznej inteligencji jet to, jak dobrze radzi sobie w grach. W 2011 r. stworzony przez IBM superkomputer Watson wygrał amerykański teleturniej Jeopardy! Z kolei w 2016 r. sztuczna inteligencja Google DeepMind AlpaGo pokonała ludzkiego arcymistrza w skomplikowanej chińskiej grze Go. Trzeba jednak zaznaczyć, że sztuczna inteligencja na obecnym etapie rozwoju, dość słabo radzi sobie z grami wymagającymi pracy zespołowej. Dlatego raczej nigdy nie zobaczymy meczów piłkarskich w wykonaniu robotów.

Bunt inteligentnych maszyn rodem z „Terminatora”? Nie tak szybko

Spośród 9100 patentów otrzymanych przez IBM w 2018 r., 1600 (czyli 18%) było związanych z AI. Ciekawe słowa padły w 2017 r. z ust prezydenta Rosji, Władimira Putina, który powiedział, że „ktokolwiek stanie się liderem w sferze AI, będzie władcą świata”.

Czy tego chcemy, czy nie, sztuczna inteligencja jest kluczowa dla naszej przyszłości. AI stanowi podstawę uczenia się komputerów – bez jej rozwoju, nie będzie lepszych komputerów, a bez lepszych komputerów nie będzie przełomowych odkryć w medycynie, fizyce czy zmianach klimatu.

W kolejnych dekadach sztuczna inteligencja będzie zyskiwać na znaczeniu. Przez ostatnie 20 lat, liczba firm zajmujących się sztuczną inteligencją wzrosła aż 14 razy, a inwestycje z nią związane zwiększyły się 6 razy. Szacuje się, że aż 77% urządzeń elektronicznych, które używamy, wykorzystuje przynajmniej jedną formę sztucznej inteligencji.

Logiczne jest więc postawienie takiego pytania: czy kiedyś w końcu uda nam się stworzyć w pełni „myślące” maszyny? Szanse na to są wątpliwe, bo wcześniej musielibyśmy poznać mechanizm działania naszych mózgów, a do tego wciąż daleko. Jest jeszcze kwestia świadomości, której tak naprawdę nie potrafimy nawet właściwie zdefiniować.

Podziel się postem:

Najnowsze:

Mobilne

Kwalifikowany podpis elektroniczny w mObywatel: Nowa, bezpłatna opcja dla użytkowników prywatnych

Aplikacja mObywatel rozszerza swoje funkcjonalności o strategiczną usługę – bezpłatny kwalifikowany podpis elektroniczny. Nowe rozwiązanie, skierowane wyłącznie do użytkowników prywatnych, umożliwia podpisanie do pięciu dokumentów miesięcznie bez ponoszenia kosztów. Jest to istotna zmiana na rynku usług cyfrowych, ponieważ dotychczas zaawansowane podpisy tego typu były dostępne wyłącznie na zasadach komercyjnych.

Bezpieczeństwo

Analiza ESET: Północnokoreańska grupa Lazarus prowadzi działania szpiegowskie przeciwko europejskiemu przemysłowi obronnemu

Firma ESET, specjalizująca się w rozwiązaniach z zakresu cyberbezpieczeństwa, opublikowała wyniki badań wskazujące na kampanię szpiegowską prowadzoną przez północnokoreańską grupę Advanced Persistent Threat (APT) o kryptonimie Lazarus. Celem ataków były przedsiębiorstwa z europejskiego sektora obronnego.

Bezpieczeństwo

Pracownicy NFZ bezprawnie przeglądali dane ubezpieczonych. Fundusz zapowiada konsekwencje i zmiany w systemie

Narodowy Fundusz Zdrowia poinformował o poważnym incydencie bezpieczeństwa. Grupa pracowników NFZ, posiadająca legalny dostęp do Centralnego Wykazu Ubezpieczonych (CWU), wykorzystała swoje uprawnienia w sposób niezgodny z prawem, przeglądając dane pacjentów bez podstawy służbowej. Sprawa została zgłoszona do Prezesa Urzędu Ochrony Danych Osobowych (UODO).

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *